1. Bundesliga Frauen

Competition

1. Bundesliga Frauen Best players MIDDLE BLOCKER
PlayerPlayedServeServeBlockBlockAttackAttackRanking
  MS#=/TotSv ind.Sv ind.#=/TotBl ind.Bl ind.#=/TotSp ind.Sp ind.Index

1

Krause Sabrina
(Schwarz-Weiß Erfurt)

6

20

6

7

6

67

0.0133

0.0133

11

3

15

51

0.0122

0.0122

27

4

2

57

7.3684

7.3684

0.53985

2

Stöhr Celin
(NawaRo Straubing)

5

21

9

5

2

63

0.0124

0.0124

13

2

1

20

0.0147

0.0147

20

5

6

61

3.0984

3.0984

0.53935

3

Gründing Lisa
(Ladies in black Aachen)

5

20

7

9

1

75

0.0095

0.0095

15

11

10

56

0.0179

0.0179

19

0

5

55

5.0909

5.0909

0.53838

4

Pettke Jennifer
(Rote Raben Vilsbiburg)

4

13

6

8

2

36

0.0141

0.0141

6

12

5

36

0.0105

0.0105

14

2

4

41

2.5366

2.5366

0.52579

5

Planinšec Saša
(Dresdner SC)

5

16

5

4

1

65

0.0082

0.0082

12

6

2

42

0.0163

0.0163

20

4

4

36

5.3333

5.3333

0.51666

6

Richardson Tyler
(NawaRo Straubing)

2

7

3

1

2

22

0.0129

0.0129

4

4

0

12

0.0103

0.0103

11

1

0

24

2.9167

2.9167

0.51403

7

Gadelha de Souza Wivian Carine
(Schwarz-Weiß Erfurt)

6

17

2

3

7

47

0.01

0.01

12

0

11

39

0.0133

0.0133

16

1

5

43

3.9535

3.9535

0.51086

8

Polder Tessa
(SSC Palmberg Schwerin)

5

16

1

8

4

53

0.0059

0.0059

13

2

8

34

0.0155

0.0155

26

4

2

45

7.1111

7.1111

0.49455

9

Szabóová Sandra
(SC Potsdam)

4

15

3

11

2

35

0.0076

0.0076

9

1

2

18

0.0136

0.0136

18

1

2

39

5.7692

5.7692

0.49451

10

Noack Juliane
(VCO Berlin)

8

26

5

11

4

60

0.0086

0.0086

13

7

4

33

0.0124

0.0124

13

1

7

46

2.8261

2.8261

0.48945

11

DeGeest Krista Marie
(Ladies in black Aachen)

5

18

4

6

0

37

0.0048

0.0048

14

12

6

49

0.0167

0.0167

17

3

2

38

5.6842

5.6842

0.4892

12

Ciganikova Simona
(VfB Suhl LOTTO Thüringen)

5

14

6

2

2

33

0.0098

0.0098

8

5

0

20

0.0098

0.0098

7

1

1

17

4.1176

4.1176

0.48521

13

Schwertmann Leonie
(Rote Raben Vilsbiburg)

4

12

4

2

2

36

0.0112

0.0112

4

3

9

34

0.0075

0.0075

15

1

1

32

4.875

4.875

0.48439

14

Dumancic Beta
(SSC Palmberg Schwerin)

4

14

3

2

3

48

0.0084

0.0084

8

0

12

44

0.0112

0.0112

18

3

1

41

4.7805

4.7805

0.48438

15

Langgemach Juliane
(USC Münster)

6

21

8

5

0

64

0.0083

0.0083

9

9

6

46

0.0094

0.0094

41

4

6

81

8.037

8.037

0.47741

16

Weitzel Camilla
(Dresdner SC)

1

3

1

0

1

13

0.0164

0.0164

0

2

4

8

0

0

5

0

2

9

1

1

0.47415

17

Mrdak Ivana
(Dresdner SC)

5

14

4

1

1

38

0.0068

0.0068

8

3

12

42

0.0109

0.0109

23

2

2

43

6.186

6.186

0.47029

18

Wilczek Natalie
(SC Potsdam)

3

9

3

9

0

23

0.0065

0.0065

5

11

0

25

0.0109

0.0109

8

1

0

12

5.25

5.25

0.46617

19

Brown Kazmiere Telonna
(USC Münster)

6

20

4

12

0

49

0.0042

0.0042

12

9

6

48

0.0125

0.0125

30

3

3

63

7.619

7.619

0.46008

20

Lemmens Nathalie
(VC Wiesbaden)

4

18

3

6

4

65

0.0095

0.0095

5

9

5

45

0.0068

0.0068

16

3

5

62

2.3226

2.3226

0.45939

21

Jacobson McKenzie
(VfB Suhl LOTTO Thüringen)

5

17

4

14

1

46

0.0061

0.0061

8

6

0

30

0.0098

0.0098

26

3

2

51

7

7

0.45818

22

Nagy Eszter
(Rote Raben Vilsbiburg)

5

11

5

3

1

35

0.009

0.009

4

6

0

20

0.006

0.006

14

1

2

28

4.3214

4.3214

0.4536

23

Ambrosius Lea
(SSC Palmberg Schwerin)

3

8

1

4

1

20

0.0043

0.0043

6

4

3

18

0.013

0.013

5

3

1

11

0.7273

0.7273

0.45218

24

Bock Josepha
(VCO Berlin)

8

23

8

10

1

59

0.0086

0.0086

6

10

9

43

0.0057

0.0057

15

5

1

45

4.6

4.6

0.44906

25

Lohuis Juliët
(USC Münster)

1

4

0

1

0

13

0

0

3

3

0

15

0.0173

0.0173

6

2

0

14

1.1429

1.1429

0.4426

26

Barfield Lauren
(SSC Palmberg Schwerin)

5

15

3

5

2

55

0.0054

0.0054

7

1

18

44

0.0076

0.0076

18

1

1

29

8.2759

8.2759

0.44094

27

Tapp Paige
(Allianz MTV Stuttgart)

4

10

0

1

2

25

0.0034

0.0034

6

2

4

24

0.0102

0.0102

21

1

1

29

6.5517

6.5517

0.43594

28

Grant Nia
(SC Potsdam)

4

17

2

6

0

41

0.0028

0.0028

8

9

1

34

0.011

0.011

22

8

1

51

4.3333

4.3333

0.43183

29

Thater Emily Grace
(Schwarz-Weiß Erfurt)

6

18

1

3

1

48

0.0022

0.0022

7

2

4

24

0.0078

0.0078

23

6

6

56

3.5357

3.5357

0.40497

30

Tomazela Pissinato Micheli
(Allianz MTV Stuttgart)

4

11

1

3

1

33

0.0034

0.0034

3

4

5

21

0.0051

0.0051

17

0

2

31

5.3226

5.3226

0.40104

31

Mariani Ashley Nichole
(VfB Suhl LOTTO Thüringen)

5

16

3

7

1

35

0.0049

0.0049

2

5

0

21

0.0024

0.0024

25

4

3

50

5.76

5.76

0.39797

32

Wezorke Barbara Roxana
(Dresdner SC)

3

6

0

1

0

10

0

0

4

0

3

11

0.0083

0.0083

7

0

0

9

4.6667

4.6667

0.39103

33

McCage Mallory Grace
(Allianz MTV Stuttgart)

4

9

1

3

0

20

0.0017

0.0017

4

2

7

28

0.0068

0.0068

11

2

3

31

1.7419

1.7419

0.39065

34

Dimitriadis Athina
(VCO Berlin)

4

9

0

4

1

18

0.002

0.002

3

1

3

11

0.006

0.006

1

3

2

8

-4.5

-4.5

0.38515

35

Mathews Alexis
(VC Wiesbaden)

2

6

0

1

0

14

0

0

3

0

3

17

0.0073

0.0073

9

1

3

19

1.5789

1.5789

0.37958

36

Hetmann Selma Theresa
(VC Wiesbaden)

2

8

0

4

0

13

0

0

2

8

0

20

0.006

0.006

3

1

3

14

-0.5714

-0.5714

0.3676

37

Farrell Madison Jo
(Ladies in black Aachen)

4

7

0

3

0

11

0

0

2

0

2

6

0.0028

0.0028

1

0

0

5

1.4

1.4

0.34911

Ranking Calculation

Middle-Blocker

the ranking takes into account:

  • Serve Index (Sv ind.): positive serves divided the total points of both teams (ranking is available only if the player has made at least one serve per set)

  • Attack Index (Sp ind.): positive attacks minus negative attacks divided the total attacks (ranking is available only if the player has made at least three attacks per set)

  • Block Index (Bl ind.): positive blocks divided the total points of both teams

The final ranking is based on the final “index” which determines the impact of the role on the game, in other words the importance of the role towards the win probability. This final Index is calculated considering the indexes for each single skill (“ind.” columns) and a coefficient which indicates the “importance” of the role to determine the probability of success for the team. Each single skill index is calculated considering the positive and negative skills based on the number of points played from the teams and multiplied for a coefficient which indicates the importance of the skill for that role to determine the probability of success for the team. The icons next to each skill column give an idea about the “weight” of the skill determining the probability of success for the team in this role. The final Index is calculated also considering the following criteria:

  • Minimum number of Serves per set:  1

  • Minimum number of Spikes per set:  1

Serve

  • # serve ace

  • / half point

  • = serve error

Attack

  • # point

  • / blocked

  • = error

Block

  • # point

  • / Net touch

  • = hand out

Filters applied

  • Minimum number of Matches played:  1